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We investigate the solution properties of a generalized discrete nonlinear Schro¨dinger equation describing a
nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik
equation and the nonintegrable discrete Schro¨dinger equation. Special interest is paid to the creation of sta-
tionary localized solutions called breathers. To tackle this problem we apply a map approach and illuminate the
linkage of homoclinic and heteroclinic map orbits with localized lattice solutions. The homoclinic and hetero-
clinic orbits correspond to exact nonlinear solitonlike eigenstates of the lattice. Normal forms and the Melnikov
method are used for analytical determinations of homoclinic orbits. Nonintegrability of the map leads to soliton
pinning on the lattice. The soliton pinning energy is calculated and it is shown that it can be tuned by varying
the ratio of the nonintegrability parameter versus the integrability parameter. The heteroclinic map orbit is
derived on the basis of a variational principle. Finally, we use homoclinic and heteroclinic orbits as initial
conditions to excite designed stationary localized solutions of desired width in the dynamics of the discrete
nonlinear Schro¨dinger equation. In this way we are able to construct coherent solitonlike structures of profile
determined by the map parameters.@S1063-651X~96!10211-7#

PACS number~s!: 03.40.Kf, 63.20.Pw, 63.20.Ry

I. INTRODUCTION

In recent studies of the nonlinear dynamics of lattice sys-
tems consisting of coupled oscillators attention was paid to
time-periodic and spatially localized excitations@1–10#. A
prototype of such a nonlinear lattice is represented by the
nonlinear Schro¨dinger equation~DNLS!, the physical impor-
tance of which is well documented in a series of publications
@11–18#. The DNLS arises also as a discretization of the
continuum nonlinear Schro¨dinger equation. The latter is
completely integrable and exhibits soliton solutions. How-
ever, the application of continuum equations disregarding the
inherent discrete lattice structure of the system gives appro-
priate results only if the spatial extension of the nonlinear
wave is much larger than the lattice spacing. On the other
hand, dealing with the discrete lattice structures and thus
with a network of coupled oscillators one faces the fact that
most nonlinear lattice systems are nonintegrable. Only a few
examples of exactly solvable discrete lattices are known,
such as the Toda lattice@19# and the Ablowitz-Ladik lattice
@20# @the case ofg50 andmÞ0 in Eq.~1!#. Indeed, numeri-
cal studies of the dynamics of the standard discrete version
of NLS @the case ofgÞ0 andm50 in Eq. ~1!# exhibit non-
integrability ~see, e.g.,@21,22#!. Hence the standard way of
discretizing not only breaks the continuous translational
symmetry, but it destroys the integrability at the same time.
As a drastic consequence one observes that the exact soliton
solution of the integrable NLS becomes pinned under the
influence of the periodic lattice potential preventing solitary-
like waves from propagating along the lattice chain@24,25#.
This ‘‘soliton trapping’’ is in sharp contrast to the behavior
in the continuum case where the exact~nonstationary! soli-
ton can travel keeping its form invariant. Moreover, in the
continuum NLS a soliton of given amplitude can always be
moved with any desired velocity through a Galileo boost
@26#. On the other hand, the integrable version of the NLS,

namely, the Ablowitz-Ladik~AL ! equation, has soliton solu-
tions which are the discrete version of the NLS solitons. Due
to the complete integrability of the AL system its solitons
can travel along the lattice chain without experiencing any
pinning potential. For the nonintegrable DNLS the existence
of a localized state with frequency lying below the linear
phonon band was established@27,28#. This solitarylike state
reduces to a one-soliton solution in the continuum NLS.
However, in DNLS a moving localized state experiences dis-
persion and eventually decays@21,27#. Nevertheless, lack of
integrability in the DNLS does not necessarily lead to the
absence of~standing! localized states. It is rather so that
large-amplitude solitarylike standing excitations in noninte-
grable systems appear as well@25#.

In order to show the existence of stationary localized ex-
citations in the form of time-periodic and spatially localized
solutions for DNLS one can start from the noncoupling limit
and show that localized solutions can be maintained for
~small! nonzero couplings@29,30#. Recently, MacKay and
Aubry have proven the existence of localized solutions in the
form of breathers for weakly coupled arrays of oscillators
@31#. They also suggested the application of the anti-
integrable limit to prove for the DNLS the existence of sta-
tionary localized solutionscn(t)5fnexp(2ivt) with real-
valued time-independent amplitudesfn and an oscillation
frequencyv ~cf. Sec. 9 of Ref.@31#!. Strongly localized
states~one-site excitations! are obtained if one lattice oscil-
lator oscillates with a relatively large amplitude while the
remaining oscillators perform small-amplitude oscillations
decaying exponentially to zero with increasing distance from
the excitation peak. Using the noncoupling limit Bressloff
proved the existence of localized ground states for the stan-
dard diffusive Haken model of a neural network@32#. Since
the Haken model is formally equivalent to a Hamiltonian
network such as the DNLS one can infer from Bresloff’s
result that time-periodic and spatially localized solutions ex-
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ist also in the DNLS case. In a recent paper the continuation
of localized lattice excitations of zero couplings into station-
ary localized solutions for nonvanishing couplings for a gen-
eralized DNLS~GDNLS! has been given@33#. This GDNLS
involves, in addition to nonintegrable DNLS term, the inte-
grable Ablowitz-Ladik contribution and has been introduced
recently by Salerno@34# and Caiet al. @28#.

In this paper we study the localized stationary solutions of
the GDNLS equation in greater detail. We show that the
results of the stationary analysis can be used to excite local-
ized stationary states of designed patterns on the lattice. Sta-
tionary localized solutions of a pure DNLS system were
studied in@35,36# in the context of wave propagation in pe-
riodically modulated media. In nonlinear optics Kerr type
nonlinearities give rise to DNLS equations and the localized
solutions are supported by states in the first gap, therefore
called gap solitons@37,38#. The corresponding stationary
system can be treated by a nonlinear map approach. In
searching for localized solutions one has to be aware that the
stationary nonintegrable DNLS system exhibits irregular
chaotic behavior which led the authors of@35,36# to the con-
clusion that perfect localization in a nonintegrable lattice
system is impossible. Nevertheless, we demonstrate that
stable localized lattice states conspire with the nonanalyticity
of the map orbits through homoclinic and heteroclinic con-
nections.

The paper is organized as follows. In Sec. II we describe
the generalized AL-DNLS equation. The stationary AL-
DNLS problem is introduced and linked with a two-
dimensional area-preserving map. We discuss the stability
properties of the fixed points of the map. In Sec. III the
Melnikov method is used to prove the existence of ho-
moclinic orbits, thus showing nonanalyticity of the map.
With the help of the Birkhoff normal forms we determine
homoclinic orbits analytically in Sec. IV and compute the
soliton pinning energy. In order to obtain the heteroclinic
orbits we exploit a variational approach relating the hetero-
clinic points to the critical points of a certain action function.
In Sec. V we excite bright~dark! solitons in the dynamical
DNLS using the homoclinic~heteroclinic! map orbits as ini-
tial data. Finally, in Sec. VI we give a short summary.

II. THE DISCRETE NONLINEAR SCHRO¨ DINGER
EQUATION AND THE STATIONARY PROBLEM

We study the generalized discrete nonlinear Schro¨dinger
equation

i
dcn~ t !

dt
52gucn~ t !u2cn~ t !2@V1mucn~ t !u2#

3@cn11~ t !1cn21~ t !#, ~1!

wherecn(t) is a complex amplitude,g andm are the non-
linearity strengths, andV is the transfer matrix element cou-
pling adjacent oscillators at lattice sitesn andn61, respec-
tively. Equation~1! interpolates between the DNLS (m50)
and the AL equation (g50). The AL system is completely
integrable and possesses an infinite number of conservation
laws for the infinite lattice@20# whereas the DNLS system is
nonintegrable@21,22#. The combination of the AL and the
DNLS systems, respectively, enables us to treat the DNLS

contribution~if g is small! as a nonintegrable perturbation of
the integrable AL system~see, e.g.,@23#!.

We investigate the solution properties of the GDNLS
where we focus on time-periodic but spatially localized so-
lutions. Substituting the ansatz

cn~ t !5fnexp~2 ivt !, ~2!

with amplitudesfn and the phase~oscillation frequency! v
into ~1!, we obtain the following coupled system for the am-
plitudesfn :

vfn1gufnu2fn1~V1mufnu2!~fn111fn21!50. ~3!

We are particularly interested in solutions exponentially lo-
calized at a single site and distinguish two situations:~1!
ufnu.ufn11u for n.0 and ufnu,ufn11u for n,0 with
limunu→`ufnu50 corresponding to the bright solitonlike so-
lution, and~2! ufnu,ufn11u for n.0 andufn11u,ufnu for
n,0 with limunu→`ufnu5a.0 resulting in the dark soliton-
like solution. Without loss of generality we assume that both
types of the solitonlike solutions have their main deviations
from the background around the central element of the lat-
tice. Furthermore we request for the bright~dark! soliton
solution exponential decrease~increase! of the amplitudes
apart from the central site forunu→`.

The nonlinear eigenvalue problem to the stationary sys-
tem of Eq.~1! is cast into an algebraic recursion relation for
the amplitudes, viz.,fn115fn11(fn ,fn21) which has
been studied in@16,35,36# in the limiting cases ofgÞ0,
m50, and ofg50, mÞ0 in @39–41#, respectively.

It can be readily seen that the currentJ defined by

J5 i @fn*fn212fnfn21* # ~4!

is conserved for the system of the stationary equations. Since
we consider an open lattice chain~without periodic boundary
conditions! we can show that localized solutions imply real
amplitudesfnPR @35#. To this end we consider the value
for the current at one of the ends of the chain assumed to be
of finite lengthN for the moment. RepresentingfN21 by the
right-hand side of the corresponding stationary equation

VfN2152
v1gufNu2

V1mufNu2
fN , ~5!

we immediately obtain thatJ[0. Due to the conservation of
J this result must hold for all lattice indicesnP@2N,N#
which, however, can only be fulfilled for either the special
case of constant amplitudesfn5const or, in general, only
for real-valuedfnPR. Hence for the remainder of this paper
we consider real-valued amplitudesfn .

It is convenient to cast the real-valued second-order dif-
ference equation~3! into a two-dimensional mapR2→R2 by
definingxn5fn andyn5fn21 where the lattice index plays
the role of discrete ‘‘time.’’ We arrive at the map

M:H xn1152
ṽ1g̃xn

2

11m̃xn
2 xn2yn

yn115xn .

~6!
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We used the notationṽ5v/V, m̃5m/V, and g̃5g/V. For
ease of notation we drop the tildes afterwards. Reversibility
of the map M is established by the factorization
M5M0M1 with

M0 :H x̄5y

ȳ5x
~7!

and

M1 :H x̄5x

ȳ52
v1gx2

11mx2
2y,

~8!

where M0,1 are involutions and their corresponding
symmetry lines are given byS0 :x5y and S1 :y
52(1/2)(vx1gx3)/(11mx2). Furthermore, the mapM is
an analytic area-preserving twist map.

In order to investigate stationary localized solutions in the
form of the bright~dark! soliton, respectively, it suffices to
study the fixed points~period-1 orbits! of the mapM. The
fixed points, for whichx̂5 ŷ, of this map are located at

x̂050 , x̂656A2
v12

g12m
, ~9!

where x̂6 exists only if sgn(v12)52sgn(g12m). The
stability of the fixed points is governed by their value for the
corresponding residues@42,43# r51/4$22 Tr@DM( x̂)#%
andD is the differential operator (]/]x, ]/]y). The tangent
mapDM is determined by

DM~x!5S vn 21

1 0 D , ~10!

with

vn52
v1~3g2mv!xn

21gmxn
4

~11mxn
2!2

. ~11!

The residue corresponding to the fixed point at the origin is

r5
1

4
~v12!. ~12!

For v values within the range of the linear band, i.e.,
uvu,2, 0,r,1 holds and the origin is a stable elliptic fixed
point encircled by stable elliptic type map orbits. For
uvu.2 ~outside the range of the linear band! we distinguish
the following two cases.

~i! v,22, g12m.0: In this case the residue passes
through zero, i.e.,r,0, and hence the origin loses stability
and is turned into an unstable hyperbolic point caused by a
tangent bifurcation. This hyperbolic point is connected to
itself by a homoclinic orbit created by the~invariant! un-
stable and stable manifold. As will be shown below, the
homoclinic orbit is manifested on the lattice chain as asoli-

tonlike solutionwhich is equivalent to the so-called gap soli-
ton of nonlinear optics lying in the stop band below the
linear passing band@37,44#.

The pair of pointsx̂6 on the symmetry lineS0 form stable
elliptic fixed points.

~ii ! v.2, g12m,0: The value for the residue at the
origin passes through the value of one, that is,r.1, con-
nected with the onset of a period-doubling bifurcation, where
the fixed point is converted into an unstable hyperbolic point
with reflection. The newly created period-2 orbits are located
on the linex52y.

The homoclinic map orbit supports on the lattice chain a
solitonlike solution which exists in the gap above the linear
passing band and has alternating signs for adjacent ampli-
tudes, i.e., sgn(fn11)52sgn(fn) as a characteristic feature
~see below!. This stationary localized structure has been
called astaggered solitonby Cai, Bishop, and Gro”nbech-
Jensen in their study of the combined AL-DNLS equation
@28#. Correspondingly the soliton solution of case~i! is
called the unstaggered soliton. Note that upon sign change
g→2g andv→2v the map has the symmetry property of
sgn(fn11)52sgn(fn) so that the unstaggered and stag-
gered soliton replace each other.

A third case of unstable fixed points can also be attributed
to the occurrence of a stationary localized structure on the
nonlinear lattice, as follows.

~iii ! uvu,2 andg12m,0: Since the frequency is in the
linear band the origin is still a stable elliptic fixed point
whereas the pair of fixed pointsx̂6 on the symmetry line
S0 represents two unstable hyperbolic fixed points which are
connected to each other via a~pair of! heteroclinic orbits.
This heteroclinic map orbit represents a kinklike solution,
also called adark soliton. There exist staggered and unstag-
gered versions of this soliton, too.

Since the nature of the solitonlike solutions depends on
the stability of the fixed points we summarize their bifurca-
tion behavior. The stability properties of the fixed point
( x̂0 ,ŷ0) are

uvu,2, elliptic point,

v.2, hyperbolic point with reflection,

v,22, hyperbolic point. ~13!

The bifurcation behavior of the fixed points (x̂6 ,ŷ6) is ap-
propriately illustrated in theg versusv parameter plane for
fixed values ofm ~Fig. 1!. Different lines are drawn to sepa-
rate the parameter regions in which the residue takes on the
values of zero and one, respectively. The residue is given by

r52
1

2

~v12!~g12m!

g2mv
. ~14!

Furthermore the parameter ranges for the existence of the
different soliton types are indicated on the plot. Comparing
Figs. 1~a! and 1~b!, belonging tom51 andm52, respec-
tively, we note that increasing the integrability parameterm
shifts ther51 lines on theg2v plane to higherugu values.
This means that higherg andv values are needed to excite
a staggered bright soliton whenm is enhanced. On the other
hand, increasingm demands higherugu to get below the
r,0 line where dark solitons exist. We remark that the dark
soliton solution exists only forg,0 and not in the case of
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vanishingg. In other words, AL dark solitons are excluded
whereas the bright solitons exist in both extreme cases of
(gÞ0, m50) and (g50, mÞ0).

In Fig. 2~a! we show the staggered and unstaggered bright
solitons superimposed on a single map plane for the param-
eter values ofv52.25, m51, g525 and v522.25,
m51, g53, respectively. Not visible on this scale are the
transversal intersections of the stable and unstable manifolds
of the hyperbolic point at the origin. We superimposed the
symmetry linesS0 andS1. Of special importance is that for
area-preserving reversible maps a class of homoclinic orbits
has one of its points on the dominant symmetry line@45#
which, in our case, isS1.

The next section is devoted to proving analytically the
existence of these intersections. Figure 2~b! illustrates the
heteroclinic structure for the parametersv521, g523,
m51. The chaotic layer connected with the heteroclinic con-
nection of the two hyperbolic points at (x̂6 ,ŷ6) is clearly
seen.

III. THE MELNIKOV FUNCTION
AND HOMOCLINIC ORBITS

As is well known in generic nonintegrable maps the stable
and unstable manifolds of hyperbolic equilibria cross each
other in homoclinic points; or there might appear crossings

of the stable and the unstable manifolds of different hyper-
bolic points, called heteroclinic connections. Such two-
dimensional maps are often associated with the Poincare´
map of periodically perturbed two-dimensional flows@42#.
For these time-continuous flows the Melnikov function
proved to be a powerful method to show the existence of
orbits homoclinic to a hyperbolic equilibrium. Glasseret al.
@46# extended the Melnikov analysis to two-dimensional dis-
crete maps of the plane which are of the formun11

5F(un)1eG(un) with u5(x,y)PR2. Thus the right-hand
side is assumed to consist of a completely integrable partF
and a small nonintegrable perturbationeG with e!1. Fur-
thermore, the unperturbed system ofe50 possesses an un-
stable equilibrium characterized by coinciding stable and un-
stable manifolds forming a perfect unperturbed separatrix on
which the solution is known explicitly. Based on geometric
arguments a Melnikov function was developed in@46# mea-
suring the distance between the stable and unstable mani-
folds under the action of the perturbation.

For a perturbational treatment we consider the nonlinear
term related withg as a small~nonintegrable! perturbation of
the integrable AL map (g50, mÞ0). Therefore we intro-
duce in~6! the small parametere:

FIG. 1. Bifurcation behavior illustrated in theg versusv pa-
rameter plane. The regions of different values of the residuer are
marked.~a! Parameterm51. ~b! Parameterm52.

FIG. 2. Map orbits related to the hyperbolic points at (x̂0 ,ŷ0)
and (x̂6 ,ŷ6). ~a! The homoclinic orbits related to the staggered and
unstaggered bright solitons, respectively. Parameters:g55, m51,
andv52.25. ~b! The heteroclinic orbit related to the unstaggered
dark soliton for the parametersg53, m51, andv522.25. Also
shown are some orbits in the interior of the heteroclinic connection.
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xn1152
v1egxn

2

11mxn
2 xu2yn ,

yn115xn , ~15!

whose integrable part (e50) possesses a separatrix given by

mx2y21x21y21vxy50. ~16!

In the first quadrant the separatrix loop can be parametrized
by

xn~ t !5
1

Am
sinhbsech~ t2nb!, ~17!

yn~ t !5
1

Am
sinhbsech@ t2~n11!b#, ~18!

where coshb52v/2 andt is a real parameter regulating the
position on the separatrix loop. Note that the AL soliton
center ofx0(0)5A(v2/421)/m andy0(0)522x0(0)/v is
determined on the map plane by the intersection point of the
AL separatrix loop with the symmetry lineS1.

According to@46# the Melnikov function is given by

M ~ t;v,m,g!5iu0~ t !iD8~0!, ~19!

with

D8~0!5 (
k52`

`

G~xk21 ,yk21!`vk , ~20!

where the wedge product is (u1 ,u2)`(v1 ,v2)5u1v2
2u2v1. Therefore the unit tangent vector to the separatrix is
given as

vk~ t !5uk~ t !/iu0~ t !i , ~21!

where

uk~ t !5S 2yk2
v

2
xk2mxk

2yk ,xk1
v

2
yk1mxkyk

2D . ~22!

In our case the perturbation isG(xn)5„2egxn
3/

(11mxn
2),0…. Thus we have

D8~0!52eg (
k52`

` xk21
3

11mxk21
2 S xk1v

2
xk211mxkxk21

2 D
5

eg

v (
k52`

`

~xk111xk21!xk
2S xk111

v

2
xk1mxk11xk

2D
5

eg

v (
k52`

`

~xk
2xk11

2 1vxk
3xk111mxk

4xk11
2 1xk11

4 !.

~23!

We therefore need to calculate sums of the form
S1(a,b,l)5(k52`

` sech2(ln2a)sech2(ln2b). Using the
Poisson summation formula we have

S1~a,b,l!5 (
k52`

` E
2`

`

exp~2p inx!sech2~lx2a!

3 sech2~lx2b!dx. ~24!

The integral is evaluated using residue calculus:

E
2`

`

exp~2ax!sech2~lx2a!sech2~lx2b!dx

52
p

l
cosecS ap

2l D cosech2dH a

l S expF2
aa

l G
1expF2

ab

l G D12cothdS expF2
aa

l G
2expF2

ab

l G D J , ~25!

whered5a2b. Settinga522p in and performing the re-
maining sum we get

S1~a,b,l!5
2p

l
@h~d! Ī ~a,b,l!1 f ~d!I ~a,b,l!#, ~26!

with

I5fS pb

l
,
p2

l D2fS pa

l
,
p2

l D1
d

p
, ~27!

Ī52
]f

]b
2

]f

]a
2
2

p
, ~28!

where

f~x,u!5 (
n51

`

sin~2nu!cosech~nx!

5
K

p
$E@am~2Ku/p!#22uE/p% ~29!

and finally h(d)5cosech2d and f (d)52cosechdcothd.
Similarly, we have

S~a,b,l!5 (
n52`

`

sech~ln2a!sech~ln2b!

5g~d!I ~a,b,l!, ~30!

where g(d)5 cosechd. The sum S2(a,b,l)
5(n52`

` sech3(ln2a)sech(ln2b) follows from S2
5(S2S9)/2, where the primes denote derivatives with re-
spect to a. The sum S3(a,b,l)5(n52`

` sech4(ln
2a)sech2(ln2b) can be constructed asS35

2
3S12

1
6S19

while the last sum(n52`
` sech4(ln2a) is S2(a,a,l). Thus

we obtain

D8~0!5
eg

vm
sinh4b@S1~ t,t2b,b!22coshbS2~ t,t2b,b!

1sinh2bS3~ t,t2b,b!1S2~ t,t,b!#, ~31!
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which reduces to

D8~0!52
eg

vm
sinh4bH 4cothbSK3k2

b2 DdnF2Ktb GsnF2Ktb G
3cnF2Ktb G1

8

3

K4k2

b3 S dn2F2Ktb Gcn2F2Ktb G
2dn2F2Ktb Gsn2F2Ktb G2k2sn2F2Ktb Gcn2F2Ktb G D J ,

~32!

whereE(k)/K(k)5p/b, andK andE are the complete el-
liptic integral of the second kind and the associated complete
elliptic integral of the second kind, respectively, and dn, sn,
and cn are Jacobian elliptic functions. Equation~32! shows
that the Melnikov function is a periodic function oft with an
infinite number of simple zeros proving the presence of ho-
moclinic chaos in the perturbed map. As a result of the non-
integrability the stable and unstable manifolds of the hyper-
bolic fixed points of the perturbed map are no longer
identical, but intersect and create a homoclinic tangle. Equa-
tion ~32! also shows that the separatrix splitting is propor-
tional to the ratiog/(vm). The same ratio was found in@33#
to limit the parameter region where the map~6! shows regu-
lar motion. Finally, from Eq.~32! it is obtained that the dis-
tance between successive transversal intersections of the
stable and unstable manifolds purely depends on the ratio
K/b, which in turn only depends onv and not directly on
the nonlinearity parametersg and m. The nonlinearity pa-
rameters appear only in front of the Melnikov function~33!
as a factor regulating the degree of the separatrix splitting.
Apparently with higher nonintegrability parameterg the
splitting grows whereas the integrability parameterm acts in
the opposite direction, namely, suppresses the splitting.

According to the defining relation betweenk andv we
can obtain thatk has a rather slow dependence onv which
means thatk can be considered small even for rather large
v such that it is reasonable to considerk as small in Eq.~32!.
This approximation reduces the complexity ofD8(0) consid-
erably. Using smallk expansions of the Jacobian elliptic
functions@47#

D8~0!52
eg

m
A~v!cosS 4Kb t1u D1O~k2!, ~33!

where

A~v!5
2K3k2

vb2 Acoth2b1
26K2

9b2 sinh
4b,

tanu5
3b cothb

4K
. ~34!

The distance between successive zeros of the Melnikov func-
tion is given by

Dt5
pb

4K
.
1

2
lnS 2

v

2
1Av2

4
21D[

1

2
ln~l!, ~35!

telling us that the distance between two adjacent intersec-
tions of the stable and unstable manifold depends solely on
the oscillation frequencyv. The distance vanishes at the
band edge ofv522 and grows logarithmically whenv
ranges further down in the gap. Interestingly, the quantity
l in Eq. ~35! is identical to the maximal eigenvalue of the
linearized map around the hyperbolic point at the origin.

IV. NORMAL FORM COMPUTATION
OF THE HOMOCLINIC ORBIT

In this section we use the Birkhoff normal forms to com-
pute the homoclinic orbit corresponding to the unstable hy-
perbolic point at the map origin forv,22 and
g12m.0. The Birkhoff normal form of an area-preserving
map yields a simplified version of the map achieved by a
canonical transformation in the form of a formal series ex-
pansion@48#. Normal forms are powerful tools for analytical
determination of homoclinic orbits of two-dimensional maps.
Recently Tabacman@49# developed another method for com-
puting homoclinic and heteroclinic orbits relying on an ac-
tion principle. In a subsequent section we exploit this method
to obtain the orbit heteroclinic to the fixed points (x̂6 ,ŷ6).
Later we need the ‘‘exact’’ location of the intersection points
of the stable and unstable manifolds to use them as initial
data in order to excite stationary localized states of the
GDNLS.

We begin by rewriting the map of~6! as follows:

M:H x̄52vx2v
~g/v2m!x2

11mx2
x2y

ȳ5x.

~36!

The linear part

x̄52vx2y,

ȳ5x. ~37!

is diagonalized through the canonical transformation

P5l1x2y, Q5l2x2y, ~38!

and

l65
1

2
@2v6Av224# ~39!

are the eigenvalues of the linear transformation~37!. The
inverse transformation is given by

x5
P2Q

l12l2, y5
l2P2l1Q

l12l2 . ~40!

After a scalingP→AmP andQ→AmQ and with the help
of l[l151/l2 we obtain for the transformed map

P̄5lP2S g

m
2v D l4

~l221!3
~P2Q!3

3
1

11@1/~l21/l!2#~P2Q!2
, ~41!
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and

Q̄5
1

l
Q2S g

m
2v D l2

~l221!3
~P2Q!3

3
1

11@1/~l21/l!2#~P2Q!2
, ~42!

or its equivalent Taylor expansion about the origin,

P̄5lP1S g

m
2v Dl (

n51

`

~21!nF l

~l221!
~P2Q!G ~2n11!

,

~43!

Q̄5
1

l
Q1S g

m
2v D 1l (

n51

`

~21!nF l

~l221!
~P2Q!G ~2n11!

.

~44!

Birkhoff @48# introduced a canonical transformation based on
the series expansion

P5j1 (
k52

`

(
l50

k

pklj
k2 lh l , ~45!

Q5h1 (
k52

`

(
l50

k

qklj
k2 lh l , ~46!

such that the (j,h) map is given by

j̄5U~jh!j, ~47!

h̄5@U~jh!#21h. ~48!

The functionU depends only on the productjh and has a
formal series expansion

U~jh!5lS 11 (
k51

`

U2k~jh!kD . ~49!

Moser@50# proved the convergence of the series~47!–~49! in
a disk surrounding the origin provided the series in~43! and
~44! represent analytical functions, which is true in our case.
Moreover, it was shown that whenever the inverse map is
also analytic, the region of convergence of the series can be
extended in narrow strips along the stable and unstable mani-
folds, respectively@51#. Furuya and Ozorio de Almeida@52#
used the Birkhoff normal form for a precise computation of
homoclinic points of the standard map and our approach pro-
ceeds along the same lines for the AL-DNLS map.

It is useful to define the auxiliary series

~P2Q!2n115 (
k52n11

~d2n11!klj
k2 lh l . ~50!

The recursion relations for the expansion coefficients are
then determined by

lUk21dk,2l112lpkl

5S g

m
2v Dl (

n51

~k21!/2

~21!n~d2n11!klS l

l221D
2n11

2lk22l (
n50

pk22n,l2n~U
k22l !2n , ~51!

l~U21!k21dk,2l212
1

l
qkl

5S g

m
2v D 1l (

n51

~k21!/2

~21!n~d2n11!klS l

l221D
2n11

2lk22l (
n50

qk22n,l2n~U
k22l !2n . ~52!

The stable and unstable manifold of the mapM are the
images of theh50 and thej50 axes under the transforma-
tion U. Since the Melnikov function possesses infinitely
many simple zeros the stable and unstable manifold cross
each other in homoclinic points which we can compute from
the images of the two axes underU. This method provides
the homoclinic orbit with uniform precision. The unstable
manifold as the projection on thej axis is determined by the
odd-power series

P5j1 (
k53

`

pk0j
k, Q5 (

k53

`

qk0j
k ~53!

for which the coefficientspk0 andqk0 can be given in closed
form

pk05S g

m
2v Dl

1

lk2l (
n51

~k21!/2

~21!nS l

l221D
2n11

~d2n11!k0

.S g

m
2v Dl

1

lk2l
~21!~k21!/2S l2

l221D
k

, ~54!

qk05S g

m
2v D 1l 1

lk21/l

3 (
n51

~k21!/2

~21!nS l

l221D
2n11

~d2n11!k0

.S g

m
2v D 1l 1

lk21/l
~21!~k21!/2S l2

l221D
k

. ~55!

We have omitted terms of order higher thanl22. Inserting
~54! and ~55! into ~53! we obtain
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P5j1S g

m
2v Dl(

k53

`
1

lk2l
~21!~k21!/2S l2

l221D
k

jk. ~56!

If again terms of the order higher thanl22 are dropped the
series can be summed up yielding

P5j2S g

m
2v D j

11~j/l!2 S j

l D 2. ~57!

Correspondingly, we obtain

Q5S g

m
2v D 1l(

k53

`
1

lk21/l
~21!~k21!/2S l2

l221D
k

jk ~58!

52S g

m
2v D j3

l4

j

11~j/l!2
1O~l22!. ~59!

Using the inverse transformation of Eq.~40! the unstable
manifold is determined by

x5lyH 11~g2vm!S 12
1

l2D 3 y2

l21~l221!2my J . ~60!

Apparently there is no intersection forg5vm for which the
map degenerates to a linear one. Since the map orbits obey
the symmetryx↔y the stable manifold is obtained from Eq.
~60! by exchangingx andy.

In Fig. 3~a! we show the first intersections of stable and

unstable manifolds obtained from the mapM. Figure 3~b!
depicts the manifolds derived with the help of the normal
form expression~60!. A comparison of the two results re-
veals the high accuracy of the normal form computations.

V. HOMOCLINIC, HETEROCLINIC ORBITS,
AND EXCITATIONS OF LOCALIZED SOLUTIONS

We have seen in Sec. II that in the map plane the origin
(xn ,yn)[(fn11 ,fn)5(0,0) forms a hyperbolic fixed point
p as long asuvu.2 which possesses its invariant stable and
unstable manifolds. Points belonging to the stable manifold
W s(p) approach the fixed pointp under map iterationMn

for n→`, likewise points on the unstable manifoldW u(p)
reach the fixed pointp for n→2`. Thus going along the
invariant manifolds of the hyperbolic fixed point localized
stationary solutions could be created. However, searching for
solitonlike solutions, one has to be aware that the DNLS
system is nonintegrable; a fact which normally prevents it
from having solitonlike solutions, since these are associated
with an integrable system. As already mentioned, the inte-
grable Ablowitz-Ladik equation possesses soliton solutions
which are the discrete versions of the solitons of the~inte-
grable! continuum nonlinear Schro¨dinger equation@20#.
These discrete AL solitons manifest in the integrable map as
a perfect separatrix with coinciding stable and unstable
manifold. Since the DNLS system is nonintegrable~see Sec.
III ! we know that the separatrix is destroyed in the sense that
the stable and unstable manifolds no longer coincide but
rather intersect each other transversally in homoclinic points,
creating complicated chaotic dynamics developing eventu-
ally Smale horseshoes. The relation between homoclinic and
heteroclinic orbits of nonintegrable maps with localized so-
lutions of the underlying lattice system generating the map is
known since the pioneering work of Aubry and co-workers
@53,54#. Aubry and Le Daeron@54# studied the Frenkel-
Kontorova model consisting of an infinite sequence of equal
springs and masses under the action of a periodic potential.
They interpreted the Frenkel-Kontorova model as a generat-
ing variational for the orbits of the standard map and showed
that homoclinic~heteroclinic! intersections, called also dis-
commensurations, are attributed to localized states pinned by
the lattice.~We refer to the next section for details.! Coste
and Peyrard@35# as well as Wan and Soukoulis@36# dealt
with the linkage between the homoclinic orbit of the DNLS
map and localized states of the lattice. Coste and Peyrard
draw the conclusion that ‘‘perfect localization in a DNLS
system is impossible’’ because of the residual stochasticity
near the hyperbolic points. Instead of exhibiting a ‘‘one-peak
solution’’ as in an integrable system where a solution can
approach a hyperbolic point as arbitrarily close as is wanted,
they claim that in a nonintegrable system multipeak solutions
are expected to appear. Wan and Soukoulis came to the same
conclusion regarding the DNLS system in the context of
Holstein’s polaron model. They interpreted the homoclinic
chaos with its stochastic behavior of the map orbits in the
vicinity of the hyperbolic point as a splitting of the large
polaron solution~represented by a solitonlike orbit! into an
array of randomly distributed small polarons pinned by the
discrete lattice@36#.

In contrast to the propositions in@35,36#, there exist stable

FIG. 3. First homoclinic windings for the parameters:g51,
m50, andv520.8 andV50.2. ~a! The orbit obtained from the
map ~6!. ~b! Result of the normal form expressions~53!.
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stationary localized solutions to the DNLS related to ho-
moclinic and heteroclinic orbits of the related map. This is
the case even though there exist neighboring map orbits
which are strongly chaotic. The reason is that the localized
states rely on the structural stability of orbits homoclinic or
heteroclinic to unstable hyperbolic fixed points such that
their amplitudes are represented by a homoclinic~hetero-
clinic! orbit in the corresponding map plane ofM. A ho-
moclinic point (fn11

h ,fn
h)[q is defined byqPW sùW u

andq5p. Sinceq belongs both to the stable and the unstable
manifold of p it follows thatMn(q)→p asn→6`.

In order to depict the homoclinic tangle of the global in-
variant manifolds we approximate the stable, respectively,
the unstable, manifold in the vicinity of the hyperbolic fixed
point by the linear subspaces~straight lines in the direction
of the eigenvectors to the two eigenvalues with modulus
apart from the unit circle! of the linearized map. Iterating a
few thousand initial points on them several times, we obtain
finally the homoclinic tangle of the hyperbolic fixed point. In

Fig. 4~b! we show the homoclinic tangle for the parameter
choice ofg51, v50.883, andV50.2. One clearly recog-
nizes the homoclinic points. Points below the symmetry line
S0 are characterized byfn11,fn for n.0, i.e., they belong
to W s. Each homoclinic point is mapped into another one
and after only a few map iterations rapidly approaches the
map origin wherefn→0.

Correspondingly, the homoclinic points above the line
S0 for which fn,fn11 for n.0 will be mapped into the
map origin in the course of the inverse map, i.e., they belong
toW u, reflecting the translational invariance of the discrete
lattice under the operationn↔2n.

Let us now use our knowledge about the homoclinic~het-
eroclinic! orbits to initiate~stationary! localized solutions for
the time-dependent DNLS dynamics. In order to invoke the
homoclinic map orbit as an initial condition for the dynam-
ics, a sufficiently accurate location of the orbit members~ho-
moclinic intersection points! is demanded. Obviously, the
corresponding amplitudes could be read off from the map

FIG. 4. ~a! Profile ucn(t)u2 of
the stationary bright solitonlike so-
lution of the DNLS. Parameters
are g51, m50, andV50.2. ~b!
The corresponding map plane de-
picting the homoclinic tangle of
the hyperbolic fixed point at the
origin. The amplitudes resulting
from the dynamical study shown
in ~b! are shown as diamonds.
They appear at the transversal in-
tersections of the invariant mani-
folds.
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plane as the coordinates of the homoclinic intersections.
However, this may not be accurate enough to ensure that the
spatial behavior of the amplitudes of corresponding dynami-
cal trajectorycn(t)5fnexp(2ivt) follows the homoclinic
orbit fn

h closely enough, thus representing a nonlinear eigen-
state. Therefore we use the normal form of Eqs.~56! and
~58! to compute the homoclinic orbit ‘‘exactly.’’

For a study of the dynamics of solitonlike solutions for
the DNLS given in Eq.~1! we use a lattice of chain length
N5201. We implement the analytically computed ho-
moclinic orbitfn

h with nP@2N/2,N/2# as initial conditions
Recn(t50)5fn and Imcn(t50)50. The result for the
solitonlike solution is illustrated in Fig. 4~a!. Using a fast-
Fourier-transform routine we determined the oscillation fre-
quency tov50.87960.004, which is in fairly good agree-
ment with the value for frequency put in the map, i.e.,
v50.883. We inserted the~dynamical! amplitudesucn(t)u2
as diamonds on the map plane in Fig. 4~b! to show that they
coincide with the homoclinic orbit. The stationary localized
solitonlike solution has the following amplitude pattern:

where the dots stand for vanishingly

small amplitudes. This localized mode is centered at a single
site. Aceves and co-workers showed also that these excita-
tion patterns of DNLS result in stable steady-state solutions
@55–57#.

In the same manner we proceed with the kinklike~dark
soliton! solution for values ofv inside the linear band. To
derive the heteroclinic orbit with high precision we apply a
variational approach developed recently by Tabacman@49#
to compute homoclinic and heteroclinic orbits for twist
maps. The advantage of this method is that it only requires
knowledge of the generating function of the map and a local
approximation of the stable and unstable manifolds of orbits
near the fixed points. The approximate manifolds can be ob-
tained with the help of the linear subspaces of the tangent
map taken at the fixed point at the origin as described above.
Equipped with these approximate invariant manifolds, it re-
mains to find the critical point of a certain functionWN
which is related to the generating function of the map~see
Proposition 7 in@49#!. The map can be rewritten in terms of
the variablesqn5fn andpn5qn2qn21. The corresponding
map orbits can be derived from the generating function

S~qn ,qn11!5
1

2
~qn112qn!

21
1

2m S g

m
2v D ln~11mqn

2!

2S g

2m
11D , ~61!

with the relations pn52]S(qn ,qn11)/]qn and pn11
5]S(qn ,qn11)/]qn11. One can define an action function
WN the critical points of which deliver the orbit heteroclinic
to the fixed points at (q̂25 x̂2 , p̂250) and (q̂15 x̂1 ,
p̂150). The action functionWN is then given by

WN~q0 , . . . ,qN!5Fu~q0!1 (
n50

N

S~qn ,qn11!2Fs~qN!,

~62!

where the functionsFu(q0) andFs(qN) describe locally the
stable and unstable manifoldsW u(q̂2 ,p̂) andW s(q̂1 ,p̂),
respectively. These functionsFs,u can be computed using
the linear subspaces at the fixed points. To compute the criti-
cal values of the functionWN we used a Newton method.
Apparently it is sufficient to obtain one single member of the
heteroclinic orbit and then to use the map for getting the
others as iterates. When iterating along the stable manifold
we soon approach~typically after 5–8 numbers of iteration!
the close vicinity of the hyperbolic fixed points where the
orbit stays. Alternatively, one can also use normal form com-
putations in order to generate the heteroclinic orbit. How-
ever, for heteroclinic orbits more than one normal form has
to be evaluated.

Figure 5~a! shows the map plane for the kinklike solution.
Again we have inserted the kink amplitudesucn(t)u2 along
the lattice as diamonds in the map plane shown in Fig. 5~b!.

In this way excitation of the staggered solitons is also
possible. Note that staggered localized DNLS modes have
been observed experimentally in a real electrical network
@58#.

The map for the stationary solutions enables one also
to predict the existence of another kind of stationary local-
ized solution with amplitude pattern of the form

, i.e., it is supported by a homoclinic

orbit having the turnstile as one homoclinic point located on
the symmetry liney5x, i.e., fn115fn . This localized
mode is centered between two lattice sites. Its energy is
higher than that of the above mentioned localized mode cen-
tered at one single lattice site~see also next section!.

We close this section with the remark that the complete
dynamical DNLS system has also been studied@59#. It was
found that the odd-parity mode is in fact a stable localized
standing excitation of DNLS sustaining symmetry breaking
perturbations of its mode pattern. Recently Aceveset al.also
showed that the preferred stable localized DNLS states are
supported by states having exponentially decaying ampli-
tudes around the maximal amplitude at a single site, i.e., the
odd-parity mode. On the other hand, the even-parity mode
exhibits a dynamical instability and collapses to the odd-
parity mode under the impact of symmetry breaking pertur-
bations. These results are in agreement with the findings in
@60#.

VI. THE SOLITON PINNING ENERGY

As a consequence of the nonintegrability of the mapM
and the resulting transversal intersection of the stable and
unstable manifolds the solitonlike solutions are pinned, i.e.,
they cannot be translated over the lattice from one point to an
adjacent without overcoming an energetic barrier@29#. The
pinning energy can be computed with the help of the normal
forms as done in@52# for the solitons of the standard map.
We use here another approach based on the findings of the
Melnikov function. Kivshar and Campbell@25# studied the
pinning energy~Peierls-Nabarro potential barrier! for the lo-
calized modes of the DNLS system, i.e., forgÞ0 and
m50.

There exist two homoclinic orbits whose points alternate
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along the invariant manifolds. Each of the homoclinic orbits
has one of its points on the symmetry lineS0 andS1, respec-
tively. These points rapidly approach the map plane origin
under the mapping where they stay most of the time. The
homoclinic orbit crossing S0 which we denote by

$Feven% represents an excitation pattern of

on the lattice chain. Such a stationary excitation pattern was
called the even-parity mode in@3# and sometimes also the
intersite centered local mode@60#. The other homoclinic or-
bit $Fodd% possesses three large amplitudes (f21 ,f0 ,f1)

and has the mode pattern which was called

the odd-parity mode@2# or on-site centered local mode@60#.
The point (f21 ,f0) is located onS1. For positive~negative!
g12m the unstaggered odd-parity~staggered even-parity!
mode has lower action~energy! than the unstaggered even-
parity ~staggered odd-parity! mode. To see this for

g12m.0, one starts iterating the mapM at the turnstile of
xeven
max5yeven

max ~a member of the unstaggered even-parity mode!,
and goes along the stable manifold in the range ofy.x till
the next intersection point is met. Then one follows the un-
stable manifold back to the turnstile. In this way a closed
curve has been described and the area enclosed by it gives
the action. We then apply the same procedure for the next
pair of homoclinic points. Going down the stable manifold
from the largest point of the unstaggered odd-parity mode
(xodd

max,yodd
max) one hits the next homoclinic point and then

switches back to the unstable manifold. The obtained closed
curve and thus the action~energy! is completely below the
first one. Thus only the odd-parity map orbit corresponds to
a physically relevant discommensuration of lowest energy.
In the same manner one can show that forg12m,0 the
staggered even-parity mode has lower action~energy! than
the staggered odd-parity one.

Following Aubry @29# we define the pinning energy as

Ep5Eeven2Eodd. ~63!

The energy functional is given by

FIG. 5. ~a! Profile ucn(t)u2 of the stationary
kinklike solution~dark soliton! of the DNLS. Pa-
rameters as in Fig. 4.~b! The corresponding map
plane illustrating the heteroclinic connection of
the hyperbolic fixed points atufn11u5ufnu
5A2(v12V/)g. The diamonds represent the
squared modulus of the kink amplitudes taken
from the dynamics of~a!.
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E~$Fn%!5(
n

F12 ~fn112fn!
21

1

2m S g

m
2v D ln~11mfn

2!

2S g

2m
11Dfn

2G . ~64!

We can computeEp ‘‘exactly’’ by using the homoclinic or-
bits obtained from the normal forms. Moreover, we can ex-
ploit the symmetry properties of the mapM. The Melnikov
function provides us with the knowledge of the location of
the intersections of the stable and unstable manifolds. Re-
garding the DNLS term proportional tog as a small pertur-
bation to the AL map, we can get one orbit point for
$Feven% as the intersection of the AL separatrix withS0 as

f21
even5f1

even5A2
v12

m
. ~65!

To express the symmetry properties of the even-parity mode
we take the lattice indicesnPZ\$0%. Similarly, we obtain
for the pointf0 on $Fodd%

f0
odd5A1

mS v2

4
21D . ~66!

The complete homoclinic orbits can be generated with help
of the relations

fn
odd5A1

m S v2

4
21D sech@2nDt#, n50,61, . . . ~67!

fn
even5A1

m S v2

4
21D sech@~2n11!Dt#, n562, . . . .

~68!

Using Dt and f61
even determined by~35! and ~65!, respec-

tively, we obtain

fn
odd5A1

m
~v224!~ln1l2n!21, n50,61, . . . , ~69!

fn
even5A1

m
~v224!~ln/21l2n/2!21, unu.1 . ~70!

Taking the respective excitation patterns into account, we
derive for the soliton energies

Eodd5
1

m
@v224# (

n50

N F S 1

ln111l2~n11! 2
1

ln1l2nD 22S g

m
12D 1

ln1l2nG1
1

m S g

m
2v D (

n50

N

lnS 11@v224#
1

ln1l2nD
1O~l22~N12!!, ~71!

and

Eeven52
1

m
Av12SA22v

1

l1l21 21D 21 1

m S g

m
2v D ln@11m~f1

even!2#2S g

m
12D ~f1

even!2

1
1

m
@v224# (

n50

2~N11! F S 1

l~n11!/21l2~n11!/22
1

ln/21l2n/2D 22S g

m
12D 1

ln/21l2n/2G1
1

m S g

m
2v D

3 (
n50

2~N11!

lnS 11@v224#
1

ln/21l2n/2D 1O~l22~N12!!. ~72!

A plot of the pinning energy as a function ofv is given in
Fig. 6. The curve parameter isg and sinceg12m.0 the
pinning energy is positive.~Correspondingly, for negative
g12m the pinning energy is negative.! The remarkable de-
crease of the pinning energy with increasedg becomes clear
in recalling that the computation of the pinning energy relied
on the homoclinic orbit which was identified with location of
the zeros of the Melnikov function on the unperturbed AL
separatrix loop. This computation is the result of a perturba-
tional calculation to first order ineg. Moreover, the first
correction to~66! is given by

f0
odd5

1

g
AA4m2

g2 1~v224!22m, ~73!

demonstrating how the maximal amplitude of the odd-parity
mode is shifted upwards on the AL separatrix loop withg
diminishing the difference of the peaks of the odd-parity and
even-parity modes. Finally the pinning energy decreases
with increasing integrability parameterm.

We note that we can design an~unstaggered! odd-parity
mode of desired width by varyingv. If d denotes a given
decrease of the center amplitude then the lattice pointÑ
Þ0 wheref

Ñ

odd
<df0

odd holds becomes

Ñ>F 2

Av2242v
cosh21~d!G , ~74!
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where@A# denotes the integer part ofA. Similar expressions
can be derived for the staggered odd-parity mode as well as
the even-parity modes.

VII. SUMMARY

We have studied in detail the stationary localized solu-
tions of the GDNLS equation. First, we have described the
general properties and features of the GDNLS and shown
how this equation can be turned into a map by using a sta-
tionary solution ansatz. The bifurcational behavior of the
fixed points of this map has been set out followed by a dis-
cussion of how the homoclinic and heteroclinic connections
between the unstable fixed points can be related to the bright
and dark solitons on the lattice. In Sec. III the DNLS term
was assumed to be a small nonintegrable perturbation to the
integrable AL equation, which allows us to calculate the
Melnikov function explicitly. The latter describes the split-
ting of the separatrix related to the hyperbolic point at the
map origin and leads to the result that the magnitude of the
separatrix splitting depends exclusively on the ratio
g/(vm). In investigations@33# this ratio was shown to de-
termine the parameter region where the behavior of the map
is regular. Furthermore, the Melnikov function shows that
the position of the homoclinic intersections along the unper-
turbed homoclinic orbit solely depends onv and not directly
on the nonlinearity parametersg and m. In Sec. IV the
Birkhoff normal forms were applied to calculate the ho-
moclinic orbits related to the hyperbolic point at the map
origin. The derived expression was shown to approximate
the manifolds with high accuracy.

In Sec. V we have discussed how the homoclinic orbit of
the related map supports localized solutions to the GDNLS.

This means that the irregular behavior of the map through
the existence of homoclinic intersections actually ensures the
existence of the localized solutions to the GDNLS. We also
pointed out, in this way, that the map allows us to design
localized excitation patterns of the GDNLS. Designing
standing localized solutions of the GDNLS is only possible
with the help of the stationary analysis which becomes clear
from the fact that the broadness of a localized solution and
its spatial exponential decay rate depend barely on the oscil-
lation frequencyv. The latter is accessible only in the sta-
tionary equation, whereas the two nonlinearity parameters
g and m appearing in the time-dependent GDNLS do not
play a role for the purpose of soliton designing. Finally, we
applied in Sec. VI the result of the Melnikov computations to
calculate the pinning energy of the bright solitons on the
lattice and showed that it can be tuned by varying the inte-
grability and nonintegrability parameters, respectively.

It is interesting to compare the current findings with the
result of Ref.@61# that continuous wave equations of the type
hu5F(u) possess time-periodic and spatially localized so-
lutions only for a small restricted class of functionsF(u). An
example exhibiting time-periodic localized solutions is the
completely integrable case ofF(u)56sinu. In order to ob-
tain solitonlike solutions of the field equations the authors of
@61# used an asymptotic expansion method where the formal
solution is represented in an asymptotic expansion as a
power law of the leading nonlinear term. A base equation
containing the essential nonlinearity is derived and the re-
maining hierarchy of equations is solved by a perturbation
theory. The self-localized solution of the base equation is
supported by a separatrix loop belonging to a hyperbolic
point ~the equilibrium stateu50) in the phase plane. It was
shown that the dimension of the stable and unstable mani-
foldsW s,u of the hyperbolic point is, in general, finite. How-
ever, for localized solutions of the field system the existence
of a separatrix loop with an infinite number of transversal
intersections ofW s,u is demanded. Hence the infinite system
of intersection conditions is overdetermined, which prevents
the existence of time-periodic and spatially localized field
solutions. Our approach of utilizing the separatrix intersec-
tions of a planar map to obtain solitonlike solutions of infi-
nite lattice systems is successful, since the one-dimensional
stable and unstable manifolds on the two-dimensional map
plane inevitably intersect transversally as a result of the non-
integrability of the map.
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@58# P. Marquié, J.M. Bilbault, and M. Remoissenet, Phys. Rev. E
51, 6127~1995!.

@59# D. Hennig~unpublished!.
@60# E.W. Laedke, K.H. Spatschek, and S.K. Turitsyn, Phys. Rev.

Lett. 73, 1055~1994!.
@61# V.M. Eleonskii, N.E. Kulagin, N.S. Novozhilova, and V.P.

Silin, Theor. Math. Phys.60, 395 ~1984!.

54 5801SOLITONLIKE SOLUTIONS OF THE GENERALIZED . . .


