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We investigate the solution properties of a generalized discrete nonlineadBg®oequation describing a
nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik
equation and the nonintegrable discrete Sdimger equation. Special interest is paid to the creation of sta-
tionary localized solutions called breathers. To tackle this problem we apply a map approach and illuminate the
linkage of homoclinic and heteroclinic map orbits with localized lattice solutions. The homoclinic and hetero-
clinic orbits correspond to exact nonlinear solitonlike eigenstates of the lattice. Normal forms and the Melnikov
method are used for analytical determinations of homoclinic orbits. Nonintegrability of the map leads to soliton
pinning on the lattice. The soliton pinning energy is calculated and it is shown that it can be tuned by varying
the ratio of the nonintegrability parameter versus the integrability parameter. The heteroclinic map orbit is
derived on the basis of a variational principle. Finally, we use homoclinic and heteroclinic orbits as initial
conditions to excite designed stationary localized solutions of desired width in the dynamics of the discrete
nonlinear Schrdinger equation. In this way we are able to construct coherent solitonlike structures of profile
determined by the map parametgi$1063-651%96)10211-1

PACS numbsg(s): 03.40.Kf, 63.20.Pw, 63.20.Ry

[. INTRODUCTION namely, the Ablowitz-LadiKAL) equation, has soliton solu-
tions which are the discrete version of the NLS solitons. Due
In recent studies of the nonlinear dynamics of lattice systo the complete integrability of the AL system its solitons
tems consisting of coupled oscillators attention was paid te&an travel along the lattice chain without experiencing any
time-periodic and spatially localized excitatiofk—10. A pinning potential. For the nonintegrable DNLS the existence
prototype of such a nonlinear lattice is represented by thef a localized state with frequency lying below the linear
nonlinear Schrdinger equatioffDNLS), the physical impor- phonon band was establishf2l7,28. This solitarylike state
tance of which is well documented in a series of publicationgeduces to a one-soliton solution in the continuum NLS.
[11-18. The DNLS arises also as a discretization of theHowever, in DNLS a moving localized state experiences dis-
continuum nonlinear Schdinger equation. The latter is persion and eventually decal®l,27]. Nevertheless, lack of
completely integrable and exhibits soliton solutions. How-integrability in the DNLS does not necessarily lead to the
ever, the application of continuum equations disregarding thabsence of(standing localized states. It is rather so that
inherent discrete lattice structure of the system gives apprdarge-amplitude solitarylike standing excitations in noninte-
priate results only if the spatial extension of the nonlineargrable systems appear as wWelb.
wave is much larger than the lattice spacing. On the other In order to show the existence of stationary localized ex-
hand, dealing with the discrete lattice structures and thusitations in the form of time-periodic and spatially localized
with a network of coupled oscillators one faces the fact thasolutions for DNLS one can start from the noncoupling limit
most nonlinear lattice systems are nonintegrable. Only a fevand show that localized solutions can be maintained for
examples of exactly solvable discrete lattices are known(smal) nonzero coupling$29,30. Recently, MacKay and
such as the Toda lattidd 9] and the Ablowitz-Ladik lattice Aubry have proven the existence of localized solutions in the
[20] [the case ofy=0 andu#0 in Eq.(1)]. Indeed, numeri- form of breathers for weakly coupled arrays of oscillators
cal studies of the dynamics of the standard discrete versiof81]. They also suggested the application of the anti-
of NLS [the case ofy+0 andu=0 in Eq.(1)] exhibit non-  integrable limit to prove for the DNLS the existence of sta-
integrability (see, e.g.[21,27)). Hence the standard way of tionary localized solutions,(t) = ¢,exp(—iwt) with real-
discretizing not only breaks the continuous translationahalued time-independent amplitudes, and an oscillation
symmetry, but it destroys the integrability at the same timefrequencyw (cf. Sec. 9 of Ref[31]). Strongly localized
As a drastic consequence one observes that the exact solitstates(one-site excitationsare obtained if one lattice oscil-
solution of the integrable NLS becomes pinned under thdator oscillates with a relatively large amplitude while the
influence of the periodic lattice potential preventing solitary-remaining oscillators perform small-amplitude oscillations
like waves from propagating along the lattice chiid,25. decaying exponentially to zero with increasing distance from
This “soliton trapping” is in sharp contrast to the behavior the excitation peak. Using the noncoupling limit Bressloff
in the continuum case where the ex@obnstationary soli-  proved the existence of localized ground states for the stan-
ton can travel keeping its form invariant. Moreover, in thedard diffusive Haken model of a neural netwd82]. Since
continuum NLS a soliton of given amplitude can always bethe Haken model is formally equivalent to a Hamiltonian
moved with any desired velocity through a Galileo boostnetwork such as the DNLS one can infer from Bresloff's
[26]. On the other hand, the integrable version of the NLSresult that time-periodic and spatially localized solutions ex-
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ist also in the DNLS case. In a recent paper the continuatiogontribution(if y is smal) as a nonintegrable perturbation of
of localized lattice excitations of zero couplings into station-the integrable AL systerfsee, e.g.[23]).
ary localized solutions for nonvanishing couplings for a gen- We investigate the solution properties of the GDNLS
eralized DNLS(GDNLS) has been givef33]. This GDNLS  where we focus on time-periodic but spatially localized so-
involves, in addition to nonintegrable DNLS term, the inte- lutions. Substituting the ansatz
grable Ablowitz-Ladik contribution and has been introduced
recently by Salern$34] and Caiet al. [28]. (1) = dpexp—iwt), 2)

In this paper we study the localized stationary solutions of
the GDNLS equation in greater detail. We show that thewith amplitudesé, and the phaséoscillation frequency
results of the stationary analysis can be used to excite localdto (1), we obtain the following coupled system for the am-
ized stationary states of designed patterns on the lattice. Stalitudes ¢,
tionary localized solutions of a pure DNLS system were ) )
studied in[35,36 in the context of wave propagation in pe- 0Pt Y| bnl bt (V+ u|hnl?) (bns1t dn-1)=0. (3)

riodically modulated media. In nonlinear optics Kerr type _ . . . .
; - izedVe are particularly interested in solutions exponentially lo-

solutions are supported by states in the first gap, thereforg@lized at a single site and distinguish two situatiofy:

called gap solitong37,38. The corresponding stationary |#nl>[¢n+1| for >0 and |¢n[<[¢,. | for n<O with
system can be treated by a nonlinear map approach. | M|p|—-| | =0 corresponding to the bright solitonlike so-
searching for localized solutions one has to be aware that tHHt1ON, @nd(2) |¢n <[ dn. 4| for n>0 and| ¢y 1| <| | for
stationary nonintegrable DNLS system exhibits irregula?<0 With limjy _..[¢y| =a>0 resulting in the dark soliton-
chaotic behavior which led the authors[86,36 to the con-  like solution. Without loss of generality we assume that both
clusion that perfect localization in a nonintegrable latticelYP€s Of the solitonlike solutions have their main deviations
system is impossible. Nevertheless, we demonstrate th&0m the background around the central element of the lat-
stable localized lattice states conspire with the nonanalyticitjice Furthermore we request for the briglark) soliton

of the map orbits through homoclinic and heteroclinic con-S°lution exponential decreasincreasg of the amplitudes
nections. apart from the central site fgn|—o.

The paper is organized as follows. In Sec. Il we describe 1h€ nonlinear eigenvalue problem to the stationary sys-
the generalized AL-DNLS equation. The stationary AL- tem of Eq.(1) is cast into an algebraic recursion relation for
DNLS problem is introduced and linked with a two- the amplitudes, Viz.,¢n,1=¢ni1(¢dn,Pn-1) which has
dimensional area-preserving map. We discuss the stabilif®en studied ir{16,35,3 in the limiting cases ofy#0,
properties of the fixed points of the map. In Sec. Il the#=0, and ofy=0, u#0 in [39-41], respectively.

Melnikov method is used to prove the existence of ho- It can be readily seen that the currehtefined by

moclinic orbits, thus showing nonanalyticity of the map. I .

With the help of the Birkhoff normal forms we determine J=il¢n dn-1— dndbn_1l 4
homoclinic orbits analytically in Sec. IV and compute the ] ] )
soliton pinning energy. In order to obtain the heterocliniciS conserved for the system of the stationary equations. Since
orbits we exploit a variational approach relating the hetero¥e consider an open lattice chdimithout periodic boundary
clinic points to the critical points of a certain action function. onditions we can show that localized solutions imply real
In Sec. V we excite brightdark) solitons in the dynamical amplitudesé, R [35]. To this end we consider the value
DNLS using the homoclini¢heteroclini¢ map orbits as ini- for the current at one of the ends of the chain assumed to be

tial data. Finally, in Sec. VI we give a short summary. of finite lengthN for the moment. Representingy -, by the
right-hand side of the corresponding stationary equation

IIl. THE DISCRETE NONLINEAR SCHRO DINGER

2
EQUATION AND THE STATIONARY PROBLEM V- 1=— \a/)+7—||zN||2¢N (5)
- T ,
We study the generalized discrete nonlinear Sdimger

equation we immediately obtain that=0. Due to the conservation of

Ay (t) J this result must hold for all lattice indicese[—N,N]

29t — (O 2D = [V+ | dn(D)|2] which, however, can o.nly be iulﬂlled for _elther the special

dt case of constant amplitudes,=const or, in general, only

for real-valuedg, € R. Hence for the remainder of this paper
we consider real-valued amplitudés, .

It is convenient to cast the real-valued second-order dif-
ference equatiofB) into a two-dimensional mafi>— R? by
definingx,= ¢,, andy,,= ¢,,_1 where the lattice index plays
the role of discrete “time.” We arrive at the map

X[ 1 (D) +¢n-_1(D], @

where ¢,(t) is a complex amplitudey and n are the non-
linearity strengths, an¥ is the transfer matrix element cou-
pling adjacent oscillators at lattice sitesandn=1, respec-
tively. Equation(1) interpolates between the DNLSE0)
and the AL equation¢=0). The AL system is completely ST

integrable and possesses an infinite number of conservation Xy 1= — “ Z gxn_yn

laws for the infinite latticd 20] whereas the DNLS system is M: 1+ ux; 6)
nonintegrablg21,22. The combination of the AL and the

DNLS systems, respectively, enables us to treat the DNLS Yni1=Xp -
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We used the notatiom=w/V, u=pu/V, andy=1y/V. For  tonlike solutiorwhich is equivalent to the so-called gap soli-
ease of notation we drop the tildes afterwards. Reversibilitgon of non!inear optics lying in the stop band below the
of the map M is established by the factorization linear passing banfB7,44.

M= MM, with The pair of pointsc.. on the symmetry lin&, form stable
elliptic fixed points.
X=y (i) ®>2, y+2u<0: The value for the residue at the
My: (7) origin passes through the value of one, thatps;1, con-
y=x nected with the onset of a period-doubling bifurcation, where

the fixed point is converted into an unstable hyperbolic point
with reflection. The newly created period-2 orbits are located
on the linex=—y.
= The homoclinic map orbit supports on the lattice chain a
solitonlike solution which exists in the gap above the linear
M;: -+ V2 (8) passing band and has alternating signs for a_djgcent ampli-
y Y —y, tudes, i.e., sgng, 1) = —sgn(¢,) as a characteristic feature
(see below. This stationary localized structure has been
called astaggered solitorby Cai, Bishop, and Gmbech-
where Mgy, are involutions and their corresponding Jensen in their study of the combined AL-DNLS equation
symmetry lines are given byS;:x=y and S;:y [28]. Correspondingly the soliton solution of casg is
= — (1/2) (wx+ yx3)/(1+ ux?). Furthermore, the mapt is  called the unstaggered soliton. Note that upon sign change
an analytic area-preserving twist map. y— — v andw— — » the map has the symmetry property of
In order to investigate stationary localized solutions in thesgn(én-+1) = —sgn(®,) so that the unstaggered and stag-
form of the bright(dark) soliton, respectively, it suffices to gered soliton replace each other.

and

B 1+ ux?

study the fixed pointéperiod-1 orbits of the mapM. The A third case of unstable fixed points can also be attributed
fixed points, for whichk=y, of this map are located at to the occurrence of a stationary localized structure on the
nonlinear lattice, as follows.
s (i) || <2 andy+2u<0: Since the frequency is in the
Xo=0, X.=*1\/— , 9) linear band the origin is still a stable elliptic fixed point
y+2u whereas the pair of fixed points. on the symmetry line

~ Sy represents two unstable hyperbolic fixed points which are
where x.. exists only if sgnfp+2)=—sgn(y+2u). The  connected to each other via(pair of) heteroclinic orbits.
stability of the fixed points is governed by their value for the This heteroclinic map orbit represents a kinklike solution,
corresponding residue$42,43 p=1/42— TIDM(X)]}  also called adark soliton There exist staggered and unstag-
andD is the differential operatord{ dx, d/dy). The tangent gered versions of this soliton, too.
mapD M is determined by Since the nature of the solitonlike solutions depends on

the stability of the fixed points we summarize their bifurca-
w, —1 tion behavior. The stability properties of the fixed point
DMX=|1 o | (100 (%o,Yo) are

|w|<2, elliptic point,

with w>2, hyperbolic point with reflection,

2 4
0ty po)Xpt yuXy 11) w<-2, hyperbolic point. (13

o (L+ux})?

The bifurcation behavior of the fixed pointg.(,y-) is ap-
Joropriately illustrated in they versuse parameter plane for
fixed values ofu (Fig. 1). Different lines are drawn to sepa-

1 rate the parameter regions in which the residue takes on the
p= Z(w+2)' (120  values of zero and one, respectively. The residue is given by

The residue corresponding to the fixed point at the origin i

1 (0+2)(y+2u)
For o values within the range of the linear band, i.e., PZ—EW-
|w| <2, 0<p<1 holds and the origin is a stable elliptic fixed
point encircled by stable elliptic type map orbits. For Furthermore the parameter ranges for the existence of the
|w|>2 (outside the range of the linear bansle distinguish  different soliton types are indicated on the plot. Comparing
the following two cases. Figs. A& and Xb), belonging tox=1 and u=2, respec-

(i) <=2, y+2u>0: In this case the residue passestively, we note that increasing the integrability parameier
through zero, i.e.p<<0, and hence the origin loses stability shifts thep=1 lines on they— » plane to highety| values.
and is turned into an unstable hyperbolic point caused by &his means that highey and w values are needed to excite
tangent bifurcation. This hyperbolic point is connected toa staggered bright soliton whenis enhanced. On the other
itself by a homoclinic orbit created by th@nvariany un-  hand, increasings demands highety| to get below the
stable and stable manifold. As will be shown below, thep<0 line where dark solitons exist. We remark that the dark
homoclinic orbit is manifested on the lattice chain asoli-  soliton solution exists only foy<<0 and not in the case of

(14
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FIG. 1. Bifurcation behavior illustrated in the versusw pa- FIG. 2. Map orbits related to the hyperbolic points & /o)
rameter plane. The regions of different values of the resjdaee ~ and (.. ,y..). (&) The homoclinic orbits related to the staggered and
marked.(a) Parametep=1. (b) Parametep.= 2. unstaggered bright solitons, respectively. Parameters5, u=1,

and w=2.25. (b) The heteroclinic orbit related to the unstaggered
dark soliton for the parameters=3, u=1, andw= —2.25. Also
shown are some orbits in the interior of the heteroclinic connection.

vanishingy. In other words, AL dark solitons are excluded
whereas the bright solitons exist in both extreme cases of
(y#0, u=0) and (y=0, u#0).

In Fig. 2(a) we show the staggered and unstaggered brigh@f the stable and the unstable manifolds of different hyper-
solitons superimposed on a single map plane for the paranpolic points, called heteroclinic connections. Such two-
eter values ofw=2.25, u=1, y=—5 and w=-2.25, dimensional maps are often associated with the Poincare
n=1, y=3, respectively. Not visible on this scale are themap of periodically perturbed two-dimensional floy\w&2].
transversal intersections of the stable and unstable manifoldsor these time-continuous flows the Melnikov function
of the hyperbolic point at the origin. We superimposed theproved to be a powerful method to show the existence of
symmetry linesS, andS,;. Of special importance is that for orbits homoclinic to a hyperbolic equilibrium. Glassaral.
area-preserving reversible maps a class of homoclinic orbit46] extended the Melnikov analysis to two-dimensional dis-
has one of its points on the dominant symmetry I[48]  crete maps of the plane which are of the fonm,,
which, in our case, iS;. _ _ =F(u,) + €G(u,) with u=(x,y) € R% Thus the right-hand

The next section is devoted to proving analytically thegjqe js assumed to consist of a completely integrable Part
existence of these intersections. Figur@)2illustrates the 54 a small nonintegrable perturbatief with e<1. Fur-
heteroclinic structure for the parameteis=—1, y==3,  hermore, the unperturbed systemef0 possesses an un-
n=1.The chaotic layer connected with the heteroclinic coniapie equilibrium characterized by coinciding stable and un-
nection of the two hyperbolic points ak{,y.) is clearly  gtaple manifolds forming a perfect unperturbed separatrix on
seen. which the solution is known explicitly. Based on geometric
arguments a Melnikov function was developed 46] mea-
suring the distance between the stable and unstable mani-
folds under the action of the perturbation.

For a perturbational treatment we consider the nonlinear

As is well known in generic nonintegrable maps the stablegerm related withy as a smallnonintegrablgperturbation of
and unstable manifolds of hyperbolic equilibria cross eactihe integrable AL map =0, w#0). Therefore we intro-
other in homoclinic points; or there might appear crossingsluce in(6) the small parametes:

Ill. THE MELNIKOV FUNCTION
AND HOMOCLINIC ORBITS
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o+ E’yX -
Xn+1= l+—,uX2_ ~Yn, Sl(a,b,)\):k; B exp(2minx)sec(Ax—a)
Yn+1=Xn, (15) X secR(Ax—b)dx. (24)

whose integrable part0) possesses a separatrix given by The integral is evaluated using residue calculus:

pux?y?+x%+y?+ oxy=0. (16) f exp( — ax)secR(A\x—a)secR(Ax—b)dx
In the first quadrant the separatrix loop can be parametrized
by 7 aT H& a aa
=~ cose¢——|cosec ex N
1
Xp(t)= —=sinhBsectit—ng), 1 a
nt) Ju hpsechit=np) a7 +ex;{—— +2coth§<ex;{—%}
1 ab
yn(t)= —=sinhBsecht—(n+1) 3], (18 - ex;{ - ) , (25
Vi A

where cosjg=—w/2 andt is a real parameter regulating the Whereé=a—b. Settinga=—2=in and performing the re-
position on the separatrix loop. Note that the AL soliton Mmaining sum we get
center ofxy(0)=+ 0?4—1)u andyq(0)=—2x,(0)/w is o
determined on the map plane by the intersection point of the g (g b \)==—[h(8)I(a,b,\)+f(8)I(a,b,\)], (26)
AL separatrix loop with the symmetry lin§;. A

According to[46] the Melnikov function is given by

with
M(t;0,1,9)= Juo(D]A"(0), 19 FESIEEN
with l=é|l ¢ ) o (27)
- — 9 dp 2
A= GO 1y vk (20 =20 2 8

where the wedge product isu{,u,)\(vq,v5)=Uv,  Where
—Uu,v 4. Therefore the unit tangent vector to the separatrix is

given as .
d(X,u)= Z sin(2nu)coseclkinx)
vil(8) = U t)/|ug()]) (21) "
where =§{E[am(2Ku/7r)]—2u E/ 7} (29

w w : _ —
U =] —ye— Exk—Mxﬁyk,XkJr Eyk+MXkyE)- (22) ar_1d_ finally h(8)=coseché and f(5)=2cosecldcoths.
Similarly, we have

In our case the perturbation isG(xn)z(—eyxﬁ’/ *
(1+ ux2),0). Thus we have S(a,b,\)= 2, seclixn—a)sectixn—b)

n=—o

=g(o)l(a,b,N), (30)

o 1
A'(0)=—
yka 1+ Xk 1

w 2
Xt 5 Xi— 17T XK1

where  g(6)= cosecld. The sum  Sy(a,b,\)

€y ) ® , =3 __.seci(An—a)sechfn—b) follows from S,
= ;k;x X1+ Xkl)xk(xk+l+§Xk+ MXk+1Xk> =(S—9")/2, where the primes denote derivatives with re-

spect to a. The sum Sz(a,b,\)==;___ sech(An

€y < —a)seck(An—b) can be constructed a$§;=3%S,— S,
=" 2 (X2X2, 1+ XXy 1+ UXXE X 1) i °C i
® K KXk+1 T OXp X 1T UK X 17 Xy 1) while the last sun®;___seclt(An—a) is S,(a,a,\). Thus
we obtain
(23

We therefore need to calculate sums of the form A'(0)= —MSIHH‘B[Sl(t t—B,8) —2cosIBS,(t,t—B,B)
Si(a,b,\)==;__,.secR(An—a)seck(An—b). Using the
Poisson summation formula we have +sint?BS;(t,t— B,8) + S,(1,t,8)], (31
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which reduces to telling us that the distance between two adjacent intersec-
tions of the stable and unstable manifold depends solely on
, €y . K3k2\ [2Kt] [2Kt the oscillation frequencyw. The distance vanishes at the
A (O):—msmrf‘ﬂ[4cothe(7>dn B "{7} band edge ofw=—2 and grows logarithmically whew

ranges further down in the gap. Interestingly, the quantity

2Kt] 8 K*K? dr 2Kt 2 2Kt \ in Eq. (35) is identical to the maximal eigenvalue of the
Xcn 5 *3 B3 B B linearized map around the hyperbolic point at the origin.
_dnz[& Sr? &}_kzsrg K 2 &D IV. NORMAL FORM COMPUTATION
B B B B ’ OF THE HOMOCLINIC ORBIT

(32 In this section we use the Birkhoff normal forms to com-
pute the homoclinic orbit corresponding to the unstable hy-

whereE(k)/K(k) ==/, andK andE are the complete el- perpolic point at the map origin foro<—2 and
liptic integral of the second kind and the associated complete-yJr 2,4>0. The Birkhoff normal form of an area-preserving
elliptic integral of Fhe sepond kind_, respectively, and dn, SNmap yields a simplified version of the map achieved by a
and cn are Jacobian elliptic functions. Equati@) shows  canonical transformation in the form of a formal series ex-
that the Melnikov function is a periodic function bfvith an  hansion[48]. Normal forms are powerful tools for analytical
infinite number of simple zeros proving the presence of hogetermination of homoclinic orbits of two-dimensional maps.
moclinic chaos in the perturbed map. As a result of the nonRecently Tabacmaj#9] developed another method for com-
integrability the stable and unstable manifolds of the hyperpyting homoclinic and heteroclinic orbits relying on an ac-
bolic fixed points of the perturbed map are no longeriion principle. In a subsequent section we exploit this method
identical, but intersect and create a homoclinic tangle. EQuay gptain the orbit heteroclinic to the fixed points.(,y-).
tion (32) also shows that the separatrix splitting is propor-| aier we need the “exact” location of the intersection points
tional to the ratioy/(wu). The same ratio was found [83]  of the stable and unstable manifolds to use them as initial

to limit the parameter region where the md shows regu-  gata in order to excite stationary localized states of the
lar motion. Finally, from Eq(32) it is obtained that the dis- gpNLS.

tance between successive transversal intersections of the g begin by rewriting the map db) as follows:
stable and unstable manifolds purely depends on the ratio

K/B, which in turn only depends om and not directly on _ (ylw— w)x?
the nonlinearity parameterg and w. The nonlinearity pa- M: X= —wx—w1+—luxzx—y (36)
rameters appear only in front of the Melnikov functi(88) N
as a factor regulating the degree of the separatrix splitting. y=X.
Apparently with higher nonintegrability parameter the .
splitting grows whereas the integrability parameteacts in The linear part
the opposite direction, namely, suppresses the splitting. X=—wX—Y,
According to the defining relation betweénand v we
can obtain thak has a rather slow dependence @nwhich Y=X. (37)
means thak can be considered small even for rather large
w such that it is reasonable to consitteas small in Eq(32). is diagonalized through the canonical transformation
This approximation reduces the complexity&f(0) consid- . B
erably. Using smallk expansions of the Jacobian elliptic P=A"Xx-y, Q=N Xx-y, (38)
functions[47]
and
Lo €Y 4K ) 1
A (O)——:A(w)co ?Ha +0(k?), (33 )\izz[_wim] (39)
where are the eigenvalues of the linear transformati@@). The
inverse transformation is given by
Ao) 2K3K? 2+ 26K2 s
w)= > CcO —57SIn s P— )\*p_)\Jr
B o8 N S VL N (40
AT—A AT—A
38 cot
tang= '34—th (34) After a scalingP— /P andQ— /1 Q and with the help
of A =A*"=1/A" we obtain for the transformed map
The distance between successive zeros of the Melnikov func- _ y %
tion is given by P=)\P—( —aJ)m(F’—Q)3
A= Lm0 )=y, e x ! 41
Tak T2 T2 7 1=z, (39 T+ [V =12 (P—0Q)2" (41)
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vl e

1
“TH =12 (P—0)2’

(42)
or its equivalent Taylor expansion about the origin,

L (2n+1)
P=\P+

(43

y . g
FopE g0

1 ¥ 1 I
=xQ+(——w>—2 (=1 [W(P—Q)

(2n+1)
M =] }

(44)
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=== _1\n(42n+1
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—x“'ngo Pr2ni-n(U )50, (51)

1 1
MU D-16ka-1— X ki
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M N A=1

n=

2n+1
(_1)n(d2n+l)k|()\2_1)

_)\k_zlngo Ok—2n1—n(UX" 250 (52

Birkhoff [48] introduced a canonical transformation based on

the series expansion

s k
P=¢+> > pué'y, (45)

k=2 =0

o k
Q=7+ > qu& 'y, (46)

k=2 1=0

such that the £, ») map is given by

E=U(én)e, (47)
7=[U(&n)] 1y (48)

The functionU depends only on the produét; and has a
formal series expansion

U(én) =\ (49

1+ Uzk(fﬂ)k)-
=1

Moser[50] proved the convergence of the seriég)—(49) in
a disk surrounding the origin provided the serie$48) and

The stable and unstable manifold of the map are the
images of thep=0 and the£=0 axes under the transforma-
tion U. Since the Melnikov function possesses infinitely
many simple zeros the stable and unstable manifold cross
each other in homoclinic points which we can compute from
the images of the two axes under This method provides
the homoclinic orbit with uniform precision. The unstable
manifold as the projection on thgaxis is determined by the
odd-power series

P=¢+ > prof, Q=2 quot (53
k=3 k=3

for which the coefficientp,o andq,o can be given in closed
form

(k—1)/2 (

¥ 2n+1
pk0=(;—w))\m nzl (—]_)” ) (d2n+1)k0

A1

(54)

1 )\2 k
L _ k=2l N
. . he : ( w)hxk—x( D (Az—l)’
(44) represent analytical functions, which is true in our case.
Moreover, it was shown that whenever the inverse map is
also analytic, the region of convergence of the series can be

extended in narrow strips along the stable and unstable mani- A 1 1

folds, respectively51]. Furuya and Ozorio de Almeid&2] Qo= u YN N=In

used the Birkhoff normal form for a precise computation of

homaoclinic points of the standard map and our approach pro- (k=1)/2 2n+1

ceeds along the same lines for the AL-DNLS map. X 21 (—1)“(m) (d2"" 1) 0
n=

It is useful to define the auxiliary series

0% 1 1 - )\2 k
(P_Q)2n+1: 2 2(__M>XM(_1)“( 1)/2<m). (55

k=2n+

. (A2 )" (50

The recursion relations for the expansion coefficients ar&Ve have omitted terms of order higher than?. Inserting
then determined by (54) and (55) into (53) we obtain
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(a)

FIG. 3. First homoclinic windings for the parameterg=1,
u=0, andw=—0.8 andV=0.2. (a) The orbit obtained from the

map (6). (b) Result of the normal form expressio(&3).

P=¢+|

If again terms of the order higher than 2 are dropped the

2

o1 A2 \K
;;‘w)NE%XV:X“_lyW{V<X7:I>fK (56)

series can be summed up yielding

P=¢- (Z —w
72
Correspondingly, we obtain

1

1< N2\
P P e

rrrls)
1+ (&N N

2

3
:_(Z_w»i——£—7+ou—%

M N1+ (&IN)

Using the inverse transformation of EGI0) the unstable

manifold is determined by

1 3
X=\Y 1+(7—w,u,)(1—v)

Apparently there is no intersection fer= wu for which the

y2

N+ (N —1)2uy |

ny

unstable manifolds obtained from the mag. Figure 3b)
depicts the manifolds derived with the help of the normal
form expression60). A comparison of the two results re-
veals the high accuracy of the normal form computations.

V. HOMOCLINIC, HETEROCLINIC ORBITS,
AND EXCITATIONS OF LOCALIZED SOLUTIONS

We have seen in Sec. Il that in the map plane the origin
(Xn:Yn)=(dn+1,9n) =(0,0) forms a hyperbolic fixed point
p as long agw|>2 which possesses its invariant stable and
unstable manifolds. Points belonging to the stable manifold
WS(p) approach the fixed poirmt under map iteration\1"
for n—oo, likewise points on the unstable manifolt"(p)
reach the fixed poinp for n— —<. Thus going along the
invariant manifolds of the hyperbolic fixed point localized
stationary solutions could be created. However, searching for
solitonlike solutions, one has to be aware that the DNLS
system is nonintegrable; a fact which normally prevents it
from having solitonlike solutions, since these are associated
with an integrable system. As already mentioned, the inte-
grable Ablowitz-Ladik equation possesses soliton solutions
which are the discrete versions of the solitons of timee-
grable continuum nonlinear Schdinger equation[20].
These discrete AL solitons manifest in the integrable map as
a perfect separatrix with coinciding stable and unstable
manifold. Since the DNLS system is nonintegratdee Sec.
III') we know that the separatrix is destroyed in the sense that
the stable and unstable manifolds no longer coincide but
rather intersect each other transversally in homaoclinic points,
creating complicated chaotic dynamics developing eventu-
ally Smale horseshoes. The relation between homoclinic and
heteroclinic orbits of nonintegrable maps with localized so-
lutions of the underlying lattice system generating the map is
known since the pioneering work of Aubry and co-workers
[53,54. Aubry and Le Daeror{54] studied the Frenkel-
Kontorova model consisting of an infinite sequence of equal
springs and masses under the action of a periodic potential.
They interpreted the Frenkel-Kontorova model as a generat-
ing variational for the orbits of the standard map and showed
that homoclinic(heteroclinig intersections, called also dis-
commensurations, are attributed to localized states pinned by
the lattice.(We refer to the next section for detajl€oste
and Peyrard35] as well as Wan and Soukoulj86] dealt
with the linkage between the homoclinic orbit of the DNLS
map and localized states of the lattice. Coste and Peyrard
draw the conclusion that “perfect localization in a DNLS
system is impossible” because of the residual stochasticity
near the hyperbolic points. Instead of exhibiting a “one-peak
solution” as in an integrable system where a solution can
approach a hyperbolic point as arbitrarily close as is wanted,
they claim that in a nonintegrable system multipeak solutions
are expected to appear. Wan and Soukoulis came to the same
conclusion regarding the DNLS system in the context of
Holstein’s polaron model. They interpreted the homoclinic
chaos with its stochastic behavior of the map orbits in the
vicinity of the hyperbolic point as a splitting of the large

map degenerates to a linear one. Since the map orbits ob@plaron solution(represented by a solitonlike orpinto an
the symmetry«y the stable manifold is obtained from Eq. array of randomly distributed small polarons pinned by the

(60) by exchanging« andy.

In Fig. 3(a@) we show the first intersections of stable and

discrete latticd 36].
In contrast to the propositions |85,36], there exist stable
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0 FIG. 4. (a) Profile |y,(t)|? of
the stationary bright solitonlike so-
lution of the DNLS. Parameters
are y=1, =0, andV=0.2. (b)
. The corresponding map plane de-
' ' ' ' T ' ' picting the homoclinic tangle of
the hyperbolic fixed point at the
1.4 - origin. The amplitudes resulting
(b) from the dynamical study shown
12k i in (b) are shown as diamonds.
: They appear at the transversal in-
tersections of the invariant mani-
Ty iy folds.
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stationary localized solutions to the DNLS related to ho-Fig. 4(b) we show the homoclinic tangle for the parameter
moclinic and heteroclinic orbits of the related map. This ischoice of y=1, »=0.883, andV=0.2. One clearly recog-
the case even though there exist neighboring map orbitsizes the homoclinic points. Points below the symmetry line
which are strongly chaotic. The reason is that the localized, are characterized by, , 1< ¢, for n>0, i.e., they belong
states rely on the structural stability of orbits homoclinic orto 3. Each homoclinic point is mapped into another one
heteroclinic to unstable hyperbolic fixed points such thatand after only a few map iterations rapidly approaches the
their amplitudes are represented by a homoclifiietero- map origin whereg,,— 0.
clinic) orbit in the corresponding map plane #fl. A ho- Correspondingly, the homoclinic points above the line
moclinic point (#!,,,¢")=q is defined byge WSNW" S, for which ¢,< .1 for n>0 will be mapped into the
andg=p. Sinceq belongs both to the stable and the unstablemap origin in the course of the inverse map, i.e., they belong
manifold of p it follows that M"(q)—p asn— *o. to WY, reflecting the translational invariance of the discrete
In order to depict the homoclinic tangle of the global in- lattice under the operatiom— —n.
variant manifolds we approximate the stable, respectively, Let us now use our knowledge about the homoclihiet-
the unstable, manifold in the vicinity of the hyperbolic fixed eroclinic) orbits to initiate(stationary localized solutions for
point by the linear subspacéstraight lines in the direction the time-dependent DNLS dynamics. In order to invoke the
of the eigenvectors to the two eigenvalues with modulushomoclinic map orbit as an initial condition for the dynam-
apart from the unit circleof the linearized map. Iterating a ics, a sufficiently accurate location of the orbit memhés
few thousand initial points on them several times, we obtairmoclinic intersection poinjsis demanded. Obviously, the
finally the homoclinic tangle of the hyperbolic fixed point. In corresponding amplitudes could be read off from the map
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plane as the coordinates of the homoclinic intersectionswhere the function®"(qy) and®3(qy) describe locally the
However, this may not be accurate enough to ensure that tretable and unstable manifold®'(g_ ,p) and W3(q.. ,p),
spatial behavior of the amplitudes of corresponding dynamirespectively. These function®>" can be computed using
cal trajectory ¢, (t) = ¢exp(—iwt) follows the homoclinic the linear subspaces at the fixed points. To compute the criti-
orbit qbﬂ closely enough, thus representing a nonlinear eigeneal values of the functioWy we used a Newton method.
state. Therefore we use the normal form of E@6) and  Apparently it is sufficient to obtain one single member of the
(58) to compute the homoclinic orbit “exactly.” heteroclinic orbit and then to use the map for getting the
For a study of the dynamics of solitonlike solutions for others as iterates. When iterating along the stable manifold
the DNLS given in Eq(1) we use a lattice of chain length we soon approacttypically after 5—8 numbers of iteratipn
N=201. We implement the analytically computed ho-the close vicinity of the hyperbolic fixed points where the
moclinic orbit ¢2 with ne[ —N/2,N/2] as initial conditions  orbit stays. Alternatively, one can also use normal form com-
Rey,(t=0)=¢, and Imy,(t=0)=0. The result for the putations in order to generate the heteroclinic orbit. How-
solitonlike solution is illustrated in Fig.(d). Using a fast- €ever, for heteroclinic orbits more than one normal form has
Fourier-transform routine we determined the oscillation fre-to be evaluated.
guency tow=0.879*+0.004, which is in fairly good agree-  Figure %a) shows the map plane for the kinklike solution.
ment with the value for frequency put in the map, i.e.,Again we have inserted the kink amplitudes,(t)|* along
»=0.883. We inserted thelynamica) amplitudes|¢,(t)|?>  the lattice as diamonds in the map plane shown in Fig). 5
as diamonds on the map plane in Figb)to show that they In this way excitation of the staggered solitons is also
coincide with the homoclinic orbit. The stationary localized Possible. Note that staggered localized DNLS modes have
solitonlike solution has the following amplitude pattern: been observed experimentally in a real electrical network

( [ [ [ ) where the dots stand for vanishingly The ‘map for 'the stationary solut!ons enab!es one also

B N R to predict the existence of another kind of stationary local-
ized solution with amplitude pattern of the form

small amplitudes. This localized mode is centered at a single

site. Aceves and co-workers showed also that these excitg¢, T { ...)» -8, it is supported by a homoclinic

tion patterns of DNLS result in stable steady-state solutions R

[565-57.

In the same manner we proceed with the kinklikiark
soliton) solution for values ofw inside the linear band. To
derive the heteroclinic orbit with high precision we apply a
variational approach developed recently by Tabach#g)
to compute homoclinic and heteroclinic orbits for twist

maps. The advantage of this method is that it only require ynamical DNLS system has also been stud®gl. It was
knowledge of the generating function of the map and a locatg, g that the odd-parity mode is in fact a stable localized

approximation of the stable and unstable manifolds of Orbit%tanding excitation of DNLS sustaining symmetry breaking
near the fixed points. The approximate manifolds can be 0E_’Eerturbations of its mode pattern. Recently Aceeeal. also
tained with the help of the linear subspaces of the tangerliy, e that the preferred stable localized DNLS states are
map taken at the fixed point at the origin as described abov%upported by states having exponentially decaying ampli-
Equipped with these approximate invariant manifolds, it ré+jes around the maximal amplitude at a single site, i.e., the

mains to find the critical point of a certain functioNy — qq_parity mode. On the other hand, the even-parity mode
which is related to the generating function of the mape  oypinits a dynamical instability and collapses to the odd-
Proposition 7 inM49]). The map can be rewritten in terms of parity mode under the impact of symmetry breaking pertur-

the variables},= ¢, andp,=0n—qn-1. The corresponding  paions. These results are in agreement with the findings in
map orbits can be derived from the generating function [60].

orbit having the turnstile as one homoclinic point located on
the symmetry liney=x, i.e., ¢,.1=¢,. This localized
mode is centered between two lattice sites. Its energy is
higher than that of the above mentioned localized mode cen-
tered at one single lattice sifeee also next sectipn

We close this section with the remark that the complete

1 1
S(Un+Gns1) = E(q“+1_q”)2+ﬂ %—a)) In(1+ xq?) VI. THE SOLITON PINNING ENERGY

As a consequence of the nonintegrability of the mep
, (61) and the resulting transversal intersection of the stable and
unstable manifolds the solitonlike solutions are pinned, i.e.,
, , they cannot be translated over the lattice from one point to an
with the relations p,=—9S(dn,0n+1)/dan aNd Pni1 adjacent without overcoming an energetic barfg]. The
=9S(qn,0n+1)/dAn+1. One can define an action function hinning energy can be computed with the help of the normal
Wy, the critical points of which deliver the orbit heteroclinic forms as done i52] for the solitons of the standard map.

Y
——+1
2

to the fixed points atd-=X_, p-=0) and @.=X:,  we use here another approach based on the findings of the
p+=0). The action functioiWy is then given by Melnikov function. Kivshar and CampbelR5] studied the
N pinning energy(Peierls-Nabarro potential barrjeor the lo-
Wy(do, - - - ’qN):q)u(qOH,;o S(Gr s 1) — P(q), Ic;alzoed modes of the DNLS system, i.e., forr0 and

(62 There exist two homoclinic orbits whose points alternate
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FIG. 5. (a) Profile |i,(t)|? of the stationary
kinklike solution(dark soliton of the DNLS. Pa-
rameters as in Fig. 4b) The corresponding map
plane illustrating the heteroclinic connection of
the hyperbolic fixed points afl ¢, 1|=|¢n|
=y—(w+2V/)y. The diamonds represent the
squared modulus of the kink amplitudes taken
from the dynamics ofa).

¢n+1

along the invariant manifolds. Each of the homoclinic orbitsy+2,>0, one starts iterating the mapt at the turnstile of

has one of its po_ints on t_he symmetry liBgandS,, respec-  ymaX_ymax (3 member of the unstaggered even-parity mode
tively. These points rapidly approach the map plane origingng goes along the stable manifold in the rangg e till
under the mapping where they stay most of the time. Thehe next intersection point is met. Then one follows the un-
homoclinic orbit crossing S, which we denote by stable manifold back to the turnstile. In this way a closed
curve has been described and the area enclosed by it gives
{® .. represents an excitation pattern (lf,, T ) ) the action. We then apply the same procedure for the next
pair of homoclinic points. Going down the stable manifold
on the lattice chain. Such a stationary excitation pattern wagom the largest point of the unstaggered odd-parity mode
called the even-parity mode i8] and sometimes also the (X(g.Yaea) one hits the next homoclinic point and then
intersite centered local modé0]. The other homoclinic or- switches back to the unstable manifold. The obtained closed
bit {®,q4 possesses three large amplitudes (, g, P1) curve and thus the actiofenergy is completely below the
first one. Thus only the odd-parity map orbit corresponds to
a physically relevant discommensuration of lowest energy.
and has the mode pattefn.. T | T ...) which was called In the same manner one can show that for2,.<0 the

staggered even-parity mode has lower actienergy than
the odd-parity modé2] or on-site centered local modeo].  the staggered odd-parity one. o
The point (¢_1, $o) is located orS,. For positive(negative Following Aubry[29] we define the pinning energy as
v+2u the unstaggered odd-parifgtaggered even-parity E-E. —E (63)
mode has lower actiofenergy than the unstaggered even- p™ “even “odd:
parity (staggered odd-parity mode. To see this for The energy functional is given by
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1 , 1 (v 5 The complete homoclinic orbits can be generated with help
EOD=2 |5 (dns1—dn)?+ 5—| ——w|In(1+ud?)  of the relations
no12 2p\p
Y 2 odd 1 w2
- ZJrl ol (64) "=V — —1|sectiznat], n=0x1,... (67)
We can computé, “exactly” by using the homoclinic or- 5
bits obtained from the normal forms. Moreover, we can ex- ,even_ . |1 [ ® _ _
ploit the symmetry properties of the ma. The Melnikov n TNyl 4 1jsech(2n+1)At], n=x2,... .
function provides us with the knowledge of the location of (68)

the intersections of the stable and unstable manifolds. Re-

garding the DNLS term proportional tp as a small pertur- - ysing At and ¢S'¢" determined by(35) and (65), respec-
bation to the AL map, we can get one orbit point for tjely, we obtain

{®ves as the intersection of the AL separatrix wify as

/ /1
d)eivien: d)iven: _ w+2_ (65) gdd: ;(w2—4)(7\n+)\_n)_1, n=0,x1,..., (69
Mm

To express the symmetry properties of the even-parity mode 1
we take the lattice indices e 2\{0}. Similarly, we obtain even__ /_(w2_4)()\n/2+)\fn/2)71, In[>1. (70)
for the pointgg on {® yyq 2

odd_ . | X w’ Taking the respective excitation patterns into account, we
o =\/—|———-1]. (66) . i :
derive for the soliton energies

1 N 1 1 \2 [y 1 1(y N
_Tr, 2 _ |2 il LA 2_
Eodd ,U«[w 4]20 ()\n+1+)\(n+1) )\n_,_)\n) (,LL+2 )\n_i_)\n}dl' ﬂ(# w)nzo Inf1+[w 4])\n+)\7n
+O(\ 2N+, (7D
and
Evers — o2 2o 1| 4 =2 oIt (s | L 2| (g2
even “ N+N 1L w\ MLPg “ 1
2(N+1) 2
1 1 1 y 1 1y
+ —[w?- - —| =42 | |+ —| = —
,u[w 4] ;::O N(F D2y~ (D2 )\n/2+)\n/2) M 2 )\n2+)\n2} M(ﬂ w)
2(N+1)
X 2 In 1+[w2—4])\—nfm +O()\_2(N+2)). (72
n=0

A plot of the pinning energy as a function af is given in  demonstrating how the maximal amplitude of the odd-parity
Fig. 6. The curve parameter ig and sincey+2u>0 the mode is shifted upwards on the AL separatrix loop wjth
pinning energy is positive(Correspondingly, for negative diminishing the difference of the peaks of the odd-parity and
v+ 2u the pinning energy is negatiyeThe remarkable de- even-parity modes. Finally the pinning energy decreases
crease of the pinning energy with increagelecomes clear with increasing integrability parametegr.

in recalling that the computation of the pinning energy relied We note that we can design &anstaggeredodd-parity

on the homoclinic orbit which was identified with location of mode of desired width by varying. If 6 denotes a given
the zeros of the Melnikov function on the unperturbed AL decrease of the center amplitude then the lattice phint
separatrix Ioop. This computation is the result of a pe(turba-io \,\,here¢9ddg 5¢8dd holds becomes

tional calculation to first order irey. Moreover, the first N

correction to(66) is given by

1\/ —4 N = a
odd_ © [Au 2 73 N= cosh 1(8) |, (74)
o=y " +(w—4)—2u (73 D’—4—w
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This means that the irregular behavior of the map through
50 the existence of homoclinic intersections actually ensures the
existence of the localized solutions to the GDNLS. We also
pointed out, in this way, that the map allows us to design
localized excitation patterns of the GDNLS. Designing
standing localized solutions of the GDNLS is only possible
with the help of the stationary analysis which becomes clear
from the fact that the broadness of a localized solution and
its spatial exponential decay rate depend barely on the oscil-
lation frequencyw. The latter is accessible only in the sta-

Ep

tionary equation, whereas the two nonlinearity parameters
ol N v and u appearing in the time-dependent GDNLS do not
0 Do s T s 5 i 5 o play a role for the purpose of soliton designing. Finally, we

applied in Sec. VI the result of the Melnikov computations to
calculate the pinning energy of the bright solitons on the
lattice and showed that it can be tuned by varying the inte-
FIG. 6. Soliton pinning energy as a function @f= —2.2 ob- grability and nonintegrability parameters, respectively.

tained from Eqs(71) and (72) with N=64 andx=1. Curve pa- It is interesting to compare the current findings with the
rameter isy as indicated. result of Ref[61] that continuous wave equations of the type

Cu=F(u) possess time-periodic and spatially localized so-
lutions only for a small restricted class of functidagu). An
example exhibiting time-periodic localized solutions is the
acgompletely integrable case &f(u)= = sinu. In order to ob-

tain solitonlike solutions of the field equations the authors of
[61] used an asymptotic expansion method where the formal
VIl. SUMMARY solution is represented in an asymptotic expansion as a

We have studied in detail the stationary localized soluPOWer law of the leading nonlinear term. A base equation
tions of the GDNLS equation. First, we have described th&ontaining the essential nonlinearity is derived and the re-
general properties and features of the GDNLS and showf@ining hierarchy of equations is solved by a perturbation
how this equation can be turned into a map by using a staheory. The self—Iocallzed_ solution of th.e base equation is
tionary solution ansatz. The bifurcational behavior of theSupported by a separatrix loop belonging to a hyperbolic
fixed points of this map has been set out followed by a disPoint (the equilibrium statei=0) in the phase plane. It was
cussion of how the homoclinic and heteroclinic connectionsshown that the dimension of the stable and unstable mani-
between the unstable fixed points can be related to the brigfilds ¥W** of the hyperbolic point is, in general, finite. How-
and dark solitons on the lattice. In Sec. Il the DNLS term €Vver, for localized solutions of the field system the existence
was assumed to be a small nonintegrable perturbation to tH¥f & separatrix loop with an infinite number of transversal
integrable AL equation, which allows us to calculate theintersections o#V*" is demanded. Hence the infinite system
Melnikov function explicitly. The latter describes the split- Of intersection conditions is overdetermined, which prevents
ting of the separatrix related to the hyperbolic point at thethe existence of time-periodic and spatially localized field
map origin and leads to the result that the magnitude of th&olutions. Our approach of utilizing the separatrix intersec-
separatrix spliting depends exclusively on the ratiotif)ns of.a planar map to obtain solit.onlike solution_s of infi-
yl(ww). In investigationg33] this ratio was shown to de- nite lattice systems is suc;cessful, since the _one—dl_mensmnal
termine the parameter region where the behavior of the maptable and unstable manifolds on the two-dimensional map
is regular. Furthermore, the Melnikov function shows thatPlane inevitably intersect transversally as a result of the non-
the position of the homoclinic intersections along the unperintegrability of the map.
turbed homoclinic orbit solely depends @nand not directly
on the nonlinearity parameterg and u. In Sec. IV the
Birkhoff normal forms were applied to calculate the ho-
moclinic orbits related to the hyperbolic point at the map This work was supported by the Deutsche Forschungsge-
origin. The derived expression was shown to approximateneinschaft via Sonderforschungsbereich 337. One of the au-
the manifolds with high accuracy. thors(K.©.R.) expresses his gratitude for the warm hospital-

In Sec. V we have discussed how the homoclinic orbit ofity and financial support of the Institut fuTheoretische
the related map supports localized solutions to the GDNLSPhysik, Freie UniversitaBerlin.

where[ A] denotes the integer part 8f Similar expressions
can be derived for the staggered odd-parity mode as well
the even-parity modes.
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